jueves, 9 de octubre de 2008

TRIANGULOS RECTANGULO SEMEJANTES

Se llaman triángulos semejantes a los triángulos que tienen sus ángulos respectivamente congruentes y sus lados homólogos son proporcionales.

El signo de la semejanza es , de manera que la expresión ABCA'B'C' se debe leer "el triángulo ABC es semejante con el triángulo A' B' C'".

TRIOS PITAGORICOS

TRIOS PITAGORICOS
Un trío pitagórico consiste de un triple de enteros positivos (a, b, c), de manera que [a.sup.2] + [b.sup.2] = [c.sup.2]. Si ocurre que DCM (a, b) = 1 = DCM (b, c) = DCM (a, c) decimos que (a, b, c) es un trío pitagórico primitivo. Esto último equivale a decir que DCM (a, b, c) = l. En otro artículo (Vol. 2, No. 2, 1997, págs. 172-178), se demostró que si m y n son enteros positivos tal que

(i) m > n

(ii) uno de los números m y n es par (el otro es impar)

(iii) DCM (m, n) = 1

entonces el triple (a, b, c) definido por a = 2 m n, b = [m.sup.2] - [n.sup.2], c = [m.sup.2] + [n.sup.2] es un trío pitagórico primitivo. Observe que a es un número par y ambos b y c son números impares.

APLICACION DEL TEOREMA DE PITAGORAS PARA CALCULAR DISTANCIAS ENTRE DOS PUNTOS EN UN PLANO CARTESIANO

DISTANCIA ENTRE DOS PUNTOS DEL PLANO CARTESIANO
Para obtener la distancia entre dos puntos del plano cartesiano:

Si se calcula la distancia entre P y Q; contando los segmentos
unitarios que separan a P y Q, se encuentra que d = 9 para el primer
caso, d = 7 para el segundo caso, y d = 8 para el tercero. Se resolverá
con este método el problema de P(-101) y Q(30).
Recuérdese que la diferencia entre números con signo permite
resolver este tipo de problemas:
Primer caso:
Segundo caso:
Tercer caso:
Cuarto caso:
d = 4 – (–5) = 9
d = 8 – 1 = 7
d = –2 – (–10) = 8
d = 30 – (–101) =
131
El teorema de Pitágoras se puede usar para calcular la distancia entre
dos puntos P y Q en un plano cartesiano.
Dados dos puntos en el plano, se pueden trazar un triángulo
rectángulo de la siguiente manera.

1. Por el punto Q se traza una paralela
al eje Y.
2. Por el punto P se traza una paralela
al eje X.
3. Las paralelas trazadas se intersectan
en el punto R.
4. Se traza el y se completa el
triángulo PQR, que resulta ser
rectángulo en R. El segmento es
la hipotenusa y los segmentos
y son los catetos.

miércoles, 8 de octubre de 2008

BIOGRAFIA DE EUCLIDES

Euclides

(330 a.C. - 275 a.C.) Matemático griego. Poco se conoce a ciencia cierta de la biografía de Euclides, pese a ser el matemático más famoso de la Antigüedad.

Es probable que Euclides se educara en Atenas, lo que explicaría con su buen conocimiento de la geometría elaborada en la escuela de Platón, aunque no parece que estuviera familiarizado con las obras de Aristóteles. Enseñó en Alejandría, donde alcanzó un gran prestigio en el ejercicio de su magisterio durante el reinado de Tolomeo I Sóter; se cuenta que éste lo requirió para que le mostrara un procedimiento abreviado para acceder al conocimiento de las matemáticas, a lo que Euclides repuso que no existía una vía regia para llegar a la geometría (el epigrama, sin embargo, se atribuye también a Menecmo como réplica a una demanda similar por parte de Alejandro Magno).

La tradición ha conservado una imagen de Euclides como hombre de notable amabilidad y modestia, y ha transmitido así mismo una anécdota relativa a su enseñanza, recogida por Juan Estobeo: un joven principiante en el estudio de la geometría le preguntó qué ganaría con su aprendizaje; Euclides, tras explicarle que la adquisición de un conocimiento es siempre valiosa en sí misma, ordenó a su esclavo que diera unas monedas al muchacho, dado que éste tenía la pretensión de obtener algún provecho de sus estudios.

Euclides fue autor de diversos tratados, pero su nombre se asocia principalmente a uno de ellos, los Elementos, que rivaliza por su difusión con las obras más famosas de la literatura universal, como la Biblia o el Quijote. Se trata, en esencia, de una compilación de obras de autores anteriores (entre los que destaca Hipócrates de Quíos), que las superó de inmediato por su plan general y la magnitud de su propósito.

TEOREMA DE PITAGORAS

Teorema de Pitágoras
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
El Teorema de Pitágoras fue descubierto por uno de los más conocidos discípulos de Pitágoras, Hipaso de Metaponto. Lleva este nombre porque su descubrimiento recae sobre la escuela pitagórica. El teorema establece que en un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los dos catetos.

Si un triángulo rectángulo tiene catetos de longitudes y , y la medida de la hipotenusa es , se establece que:

Contenido
1 Demostraciones
1.1 China: el Chou Pei Suan Ching, y el Chui Chang Suang Shu
1.2 Demostraciones supuestas de Pitágoras
1.3 Demostración de Platón: el Menón
1.4 Demostración de Euclides: proposición I.47 de Los Elementos
1.5 Demostración de Pappus
2 Notas
3 Referencias bibliográficas
4 Véase también
5 Enlaces externos



Demostraciones [editar]El Teorema de Pitágoras es de los que cuentan con un mayor número de demostraciones diferentes, utilizando métodos muy diversos. Una de las causas de esto es que en la Edad Media se exigía una nueva demostración de él para alcanzar el grado de Magíster matheseos.

Algunos autores proponen hasta más de mil demostraciones. Otros autores, como el matemático estadounidense E. S. Loomis, catalogó 367 pruebas diferentes en su libro de 1927 The Pitagoream Proposition.

En ese mismo libro, Loomis clasificaría las demostraciones en cuatro grandes grupos: las algebraicas, donde se relacionan los lados y segmentos del triángulo; geométricas, en las que se realizan comparaciones de áreas; dinámicas a través de las propiedades de fuerza, masa; y las cuaterniónicas, mediante el uso de vectores.


China: el Chou Pei Suan Ching, y el Chui Chang Suang Shu [editar]
Prueba visual para un triángulo de a = 3, b = 4 y c = 5 como se ve en el Chou Pei Suan Ching, 500-200 a. C.El Chou Pei es una obra matemática de datación discutida, aunque se acepta mayoritariamente que fue escrita entre el 500 y el 300 a. C. Se cree que Pitágoras no conoció esta obra. En cuanto al Chui Chang parece que es posterior, está fechado en torno al año 250 a. C.

El Chou Pei demuestra el teorema construyendo un cuadrado de lado (a+b) que se parte en cuatro triángulos de base a y altura b, y un cuadrado de lado c.

Demostración
Sea el triángulo rectángulo de catetos a y b e hipotenusa c. Se trata de demostrar que el área del cuadrado de lado c es igual a la suma de las áreas de los cuadrados de lado a y lado b. Es decir:


Si añadimos tres triángulos iguales al original dentro del cuadrado de lado c formando la figura mostrada en la imagen, obtenemos un cuadrado de menor tamaño. Se puede observar que el cuadrado resultante tiene efectivamente un lado de b - a. Luego, el área de este cuadrado menor puede expresarse de la siguiente manera:


Ya que .

Es evidente que el área del cuadrado de lado c es la suma del área de los cuatro triángulos de altura a y base b que están dentro de él más el área del cuadrado menor:


Con lo cual queda demostrado el teorema.


Demostraciones supuestas de Pitágoras [editar]
Se cree que Pitágoras se basó en la semejanza de los triángulos ABC, AHC y BHC. La figura coloreada hace evidente el cumplimiento del teorema.Se estima que se demostró el teorema mediante semejanza de triángulos: sus lados homólogos son proporcionales.[1]

Sea el triángulo ABC, rectángulo en C. El segmento CH es la altura relativa a la hipotenusa, en la que determina los segmentos a’ y b’, proyecciones en ella de los catetos a y b, respectivamente.

Los triángulos rectángulos ABC, AHC y BHC tienen sus tres bases iguales: todos tienen dos bases en común, y los ángulos agudos son iguales bien por ser comunes, bien por tener sus lados perpendiculares. En consecuencia dichos triángulos son semejantes.

De la semejanza entre ABC y AHC:











De la semejanza entre ABC y BHC:









Los resultados obtenidos son el teorema del cateto. Sumando:


Pero , por lo que finalmente resulta:



La relación entre las superficies de dos figuras semejantes es igual al cuadrado de su razón de semejanza. En esto pudo haberse basado Pitágoras para demostrar su teoremaPitágoras también pudo haber demostrado el teorema basándose en la relación entre las superficies de figuras semejantes.

Los triángulos PQR y PST son semejantes, de manera que:


siendo r la razón de semejanza entre dichos triángulos. Si ahora buscamos la relación entre sus superficies:



obtenemos después de simplificar que:


pero siendo la razón de semejanza, está claro que:


Es decir, "la relación entre las superficies de dos figuras semejantes es igual al cuadrado de la razón de semejanza".

Aplicando ese principio a los triángulos rectángulos semejantes ACH y BCH tenemos que:


que de acuerdo con las propiedades de las proporciones nos da:

(I)
y por la semejanza entre los triángulos ACH y ABC resulta que:



pero según (I) , así que:


y por lo tanto:


quedando demostrado el teorema de Pitágoras.


Los cuadrados compuestos en el centro y a la derecha tienen áreas equivalentes. Quitándoles los triángulos el teorema de Pitágoras queda demostrado.Es asimismo posible que Pitágoras hubiera obtenido una demostración gráfica del teorema.

Partiendo de la configuración inicial, con el triángulo rectángulo de lados a, b, c, y los cuadrados correspondientes a catetos e hipotenusa –izquierda-, se construyen dos cuadrados iguales:

Uno de ellos –centro- está formado por los cuadrados de los catetos, más cuatro triángulos rectángulos iguales al triángulo inicial.
El otro cuadrado –derecha- lo conforman los mismos cuatro triángulos, y el cuadrado de la hipotenusa.
Si a cada uno de estos cuadrados les quitamos los triángulos, evidentemente el área del cuadrado gris (c2) equivale a la de los cuadrados amarillo y azul (b2 + a2), habiéndose demostrado el teorema de Pitágoras.


Demostración de Platón: el Menón [editar]
En uno de los meandros del Menón se plantea el problema de la duplicación del cuadrado –izquierda y centro-. La solución que elabora Platón encierra inesperadamente una demostración del teorema de Pitágoras –derecha-, si bien referida exclusivamente a los triángulos rectángulos isósceles.« Dinos, Sócrates, ¿cómo se adquiere la virtud? ¿Mediante la enseñanza o mediante el ejercicio? »

Esta filosófica pregunta forma parte del Menón de Platón, y a su tenor no parece que la Geometría vaya a hacer acto de presencia en el Diálogo, pero el filósofo es quien maneja los hilos y unas páginas más adelante nos encontramos con cuadrados y superficies. En ese fragmento, Platón habla de que conocer es recordar, a lo que llama reminiscencias.

En el texto Sócrates se lo demuestra a Menón llamando a uno de sus esclavos, que nunca ha sido educado, pero que, sin embargo, es capaz de llegar a demostrar el teorema de Pitágoras. Sócrates le plantea el problema de la duplicación del cuadrado. Sucesivas preguntas van sacando de la mente del esclavo la solución del problema, con lo que pretendidamente aquél no hizo sino "recordar" lo que ya "sabía". Ese método para sacar esos conocimientos es la mayéutica (por la cual el individuo "da a luz" un conocimiento, desde su interior)

Platón construye un cuadrado cuyo lado es de dos unidades (izquierda, gris). Su área vale cuatro unidades cuadradas. Trazando un nuevo cuadrado sobre su diagonal AB, obtiene un cuadrado de ocho unidades cuadradas (centro, azul), doble superficie de la del primero.[2] Hasta aquí la duplicación del cuadrado. Pero también se ha demostrado el teorema de Pitágoras (derecha): el área del cuadrado azul (8u2) construido sobre la hipotenusa AB del triángulo rectángulo ABC, es igual a la suma de las áreas de los cuadrados grises (4u2 cada uno) construidos sobre los catetos AC y BC. Generalizando: cada uno de los cuadrados construidos sobre la hipotenusa (la diagonal del cuadrado inicial) contiene cuatro de dichos triángulos.

Queda demostrado el teorema de Pitágoras, si bien restringido a los triángulos rectángulos isósceles.


Demostración de Euclides: proposición I.47 de Los Elementos [editar]
La proposición I.41 de Euclides. La superficie del rectángulo ABCD es el doble de la de cualquiera de los triángulos: sus bases son la misma –DC-, y están entre las mismas paralelas. Esto es cuanto necesita Euclides para demostrar el teorema de Pitágoras.
La demostración de Euclides es puramente geométrica. Su columna vertebral es la sencilla proposición I.47 de Los Elementos.
La proposición I.36 de Euclides: los paralelogramos ABCD y EFCD tienen áreas equivalentes, por tener igual base, y estar comprendidos entre las mismas paralelas.El descubrimiento de los números irracionales por Pitágoras y los Pitagóricos supuso un contratiempo muy serio.[3] De pronto, las proporciones dejaron de tener validez universal, no siempre podían aplicarse. La demostración de Pitágoras de su teorema se basaba muy probablemente en proporciones, y una proporción es un número racional. ¿Sería realmente válida como demostración? Ante esto, Euclides elabora una demostración nueva que elude la posibilidad de encontrarse con números irracionales.

El eje de su demostración es la proposición I.47 de Los Elementos:

Si un paralelogramo y un triángulo tienen la misma base, y están comprendidos entre las mismas paralelas, entonces el área del paralelogramo es doble de la del triángulo. Esto es tanto como decir que a igual base y altura, el área de aquél dobla a la de éste.
Tenemos el triángulo ABC, rectángulo en C, y construimos los cuadrados correspondientes a catetos e hipotenusa. La altura CH se prolonga hasta J. Seguidamente se trazan cuatro triángulos, iguales dos a dos:

Triángulos ACK y ABD: son iguales, pues siendo AD=AC, y AK=AB, necesariamente BD=CK. Sus tres lados son iguales.
Triángulos ABG y CBI: análogamente, AB=BI, y BG=BC, así que AG=CI. Sus tres lados son asimismo iguales.
Abundando en las anteriores consideraciones, nótese que un giro con centro en A, y sentido positivo, transforma ACK en ABD. Y un giro con centro en B, y sentido también positivo, transforma ABG en CBI. En la demostración de Leonardo da Vinci nos encontraremos de nuevo con giros que demuestran la igualdad de figuras.

Veamos seguidamente que:

Las paralelas r y s comprenden al triángulo ACK y el rectángulo AHJK, los cuales tienen la misma base, AK. Por tanto de acuerdo con la proposición I.47 AHJK tiene doble área que ACK.
Las paralelas m y n contienen a ABD y ADEC, cuya base común es AD. Así que el área de ADEC es doble de la de ABD.
Pero siendo ACK=ABD, resulta que el rectángulo AHJK y el cuadrado ADEC tienen áreas equivalentes. Haciendo razonamientos similares con los triángulos ABG y CBI, respecto al cuadrado BCFG y al rectángulo HBIJ respectivamente, concluimos que éstos últimos tienen áreas asimismo iguales. A partir de aquí, es inmediato que la suma de las áreas de los cuadrados construidos sobre los catetos, es igual al área del cuadrado construido sobre la hipotenusa


Demostración de Pappus [editar]
La demostración de Pappus parece ser unas musicales variaciones sobre un mismo tema, respecto a la de Euclides.Unos 625 años después que Euclides, Pappus[4] parece seguir su senda, y desarrolla una demostración del teorema de Pitágoras basada en Elementos I.36:

Dos paralelogramos de igual base, y entre las mismas paralelas, tienen superficies equivalentes.


Notas [editar]↑ Una vez descubiertos los números irracionales esta demostración quedaba invalidada. Será Euclides el primero en prescindir de la proporcionalidad para demostrar el teorema.
↑ En primer lugar se ha cuadruplicado el área del cuadrado inicial, que aumentó de cuatro a dieciséis unidades cuadradas, para después obtener el resultado buscado
↑ Los pitagóricos habían llegado a la conclusión de que el número racional lo explicaba todo. Por eso el descubrimiento de los números irracionales causó un verdadero trauma. Juraron mantener el secreto de lo descubierto pero, según la leyenda (¿o realidad?) el pitagórico Hipaso de Metaponte lo reveló. En represalia, sus compañeros invocaron la ira de los dioses e Hipaso murió en un naufragio.
↑ Pappus nació en Alejandría -Pappus de Alejandría- sobre el año 290 de nuestra era, y murió alrededor del 350. Es el último de los grandes geómetras griegos.

BIOGRAFIA DE THALES

THALES DE MILETO (624 a.C - 546 a.C.)

Nació y murió en la ciudad de Mileto. Sus padres fueron Examyes y Cleobuline. Fue maestro de Anaximandro. Ninguno de sus escritos sobrevivieron , por lo que es difícil saber exactamente cuáles fueron sus descubrimientos matemáticos. Probablemente se le atribuyan descubrimientos que no le corresponden. Lo que sabemos de Thales proviene de Aristóteles. Primero fue a Egipto y desde allí introdujo en Grecia Los estudios sobre Geometría.

La opinión antigua es unánime al considerar a Thales como un hombre excepcionalmente inteligente y como el primer filósofo griego, científico y matemático, pero actuaba como un ingeniero. Es considerado el primero de los Siete Sabios Griegos24. El hecho concreto que más aseguró su reputación fue la predicción de un eclipse de sol. en 585 a.C., que tuvo lugar exactamente el. 28 de mayo del año que él había predicho. Igualmente fue el primero en mantener que la luna brilla por el reflejo del sol.

Según Proclo, primero fue a Egipto donde entró en contacto con la Geometría que luego introdujo a Grecia.

Tomó prestada La Geometría de los egipcios y dio en ella un avance fundamental ya que fue el primero en emprender la tarea de demostrar exposiciones matemáticas mediante series regulares de argumentos. En otras palabras, inventó la matemática deductiva. Se le asignan entre otros los siguientes teoremas:

1. Un ángulo inscripto en una semicircunferencia es un ángulo recto.

2. Todo círculo queda dividido en dos partes iguales por un diámetro.

3. Los ángulos básicos en un triángulo isósceles son iguales.

4. Los ángulos opuestos por el vértice que se forman al cortarse dos rectas, son iguales.

5. Si dos triángulos son tales que dos ángulos y un lado de uno de ellos son respectivamente iguales a dos ángulos y un lado del otro, entonces los dos triángulos son iguales.

Midió la altura de las pirámides midiendo la altura de sus sombras en el momento en el cual la sombra de una persona es igual a su altura. Este razonamiento no parece surgir de conocimientos geométricos sino más bien de una observación empírica. Creyó que en el. momento en que la sombra de un objeto coincide con su altura, también eso es válido para cualquier objeto, por ejemplo, la pirámide.

Luego utilizó conceptos similares al de la semejanza de triángulos. También calculó la distancia a un barco en el mar, para lo cual habría utilizado el teorema 3.

A continuación se muestra la demostración que aparece en la Proposición 32 del Libro III de Los Elementos de Euclides del teorema 1:



Como OA y OB son iguales, Los ángulos ABO y BOA también son iguales y como OA y OC son iguales, tos ángulos OAC y OCA son iguales. Por tanto, BAC es la suma de ABC y ACB, teniendo en cuenta que la suena de los tres ángulos de un triángulo BAC debe ser recto.

Creía que La Tierra era un disco plano que flotaba sobre agua y que todas La cosas .venian del agua. Explicaba los terremotos por el hecho de que la Tierra flote sobre agua. Fue el primero en tratar de explicar estos fenómenos en forma racional y no por medios sobrenaturales.

Hay dos anécdotas vinculadas a Thales. Una La cuenta Aristóteles, y dice que Thales usaba sus habilidades para deducir que La cosecha de aceitunas de La siguiente temporada sería muy buena. Entonces compraba todas las prensas de aceitunas, con Lo cual podía hacer fortunas cuando la abundante cosecha llegaba.

Platón cuenta la otra anécdota: una noche Thales estaba observando el cielo y tropezó. Una sirviente lo Levantó y Le dijo: cómo pretendes entender lo que pasa en el cielo, si no puedes ver lo que está a tus pies.

Es difícil escribir sobre Thales, como sobre otros personajes de esa época, porque era común acreditarles a hombres famosos descubrimientos que no hicieron. Por ejemplo, no hay constancia histórica de que Thales haya enunciado eL teorema que conocemos como Teorema de Thales, aunque si es cierto que Thales trabajó sobre la proporcionalidad de segmentos al calcular alturas midiendo las sombras.

En el momento de morir pronunció Las siguientes palabras: «Te alabo, ¡oh Zeus!, porque me acercas a ti. Por haber envejecido, no podía ya ver las estrellas desde la tierra. »

CARACOLA DE PITAGORAS